Monkey Saddle

Screen Shot 2015-07-27 at 1.19.21 PMIn order to make a monkey saddle I created the surface in Mathematica. I then exported it as a .wrl file and imported it into Cinema 4D. Once it was in Cinema 4D, like all surfaces, I made it the correct size, optimized the polygons and extruded them by 0.20 cm.

I then added an equation to the surface by punching it all the way through. This time with the equation I used Arial as the font instead of Times New Roman to hopefully avoid the issues we had with the formula when printing the hyperbolic paraboloid.monkeysaddle

I printed the monkey saddle using the liquid printer and the formula in Arial font ended up looking great. The model can be found on Thingiverse hereformula

Helicoids

My next project (after finally finishing all the quadratic surfaces) was to make a helicoid. I spend some time on Mathematica creating different helicoids by changing the parameters of the formula. The helicoid is pararametrized by \(x=u\cos(t), y=u\sin(t),\) and \(z=u\), where \(u\in[-1,1] \) and \(t\in[0,2\pi]\).

Professor Denne and I decided to print two of the ones I created to start (we may print more!). I exported the following Mathematica files and imported them into Cinema 4D.Screen Shot 2015-07-27 at 1.01.24 PM

 

Professor Denne used these files (as well as others) to create another worksheet in Mathematica. It can be found here

 

Screen Shot 2015-07-27 at 1.01.44 PMAfter making them the correct size I optimized the polygons and extruded them by 0.20 cm (a process I can now do very quickly after all my practice with the quadratic surfaces). I then printed each of them on the liquid printer and had fantastic results! 

helicoid-half-1The .STL and .form files for both of these helicoids can be found on Thingiverse.helicoid-full-1

 

 

 

 

 

 

Later on, I made another helicoid, this one with \(u\in[0.25,1.25]\) and \(t\in[0,2\pi]\). This model can be found on Thingiverse here.

     helicoid2-4

Quadratic Surfaces – Hyperboloid of Two Sheets

The last quadratic surface I printed was a hyperboloid of two sheets.

Screen Shot 2015-07-20 at 1.25.54 PM For the hyperboloid of two sheets I created the entire object from scratch in Cinema 4D using the same process I used to create the cone and other similar objects. For this surface I used the same formula spline as the hyperboloid of one sheet \(x(t)=cosh(t), y(t)=sinh(t), z(t)=0\), and then rotated it to the correct orientation. I then used the lathe tool and rotated this spline 180 degrees since this was all it needed. Because of this I needed to use only 30 rotation segments for a total of 60 all around the object. 

Screen Shot 2015-07-20 at 1.25.32 PMI also had to reverse the normals on half of the object to make sure they were all aligned with the other half before I extruded the surface. I optimized the polygons to be sure the edges joined up into one object. I then extruded the surface to create my hyperboloid of two sheets. I copied this and put equations through one of them. I also made sure to Boole the edges of the hyperboloid to make them flat for printing. 

FullSizeRender 5 copy 2

 

Here is a picture of the final object! It can be found on Thingiverse here.

 

 

Quadratic Surfaces – Hyperbolic Paraboloid

The quadratic surface that gave me the most trouble was the hyperbolic paraboloid. This surface could not be created in Cinema 4D and had to be imported from Mathematica. When I imported the surface from Mathematica the center of the saddle had hundreds of little polygons that overlapped, which became a huge problem when I tried to extrude them to give the surface thickness.

I had to spend a long time experimenting to find the lowest number of plot points I could use in Mathematica and still get an accurate object.Screen Shot 2015-07-20 at 11.39.50 AM Once I had done this I did the same thing with the optimize tool in Cinema 4D to see how big I could make the polygons before the surface started to lose accuracy. The first time I went through all these steps the hyperbolic paraboloid I had chosen just didn’t work correctly. So, I went back to the beginning and created a new Mathematica file of a hyperbolic paraboloid, and spent some time deciding where to cut it off to create edges that were as straight as possible.

Screen Shot 2015-07-20 at 12.51.01 PM Once I had done this and imported the surface into Mathmatica I optimized the surface as much as it would allow and extruded it. Finally I had a surface I could print! I then added the hyperbolic paraboloid’s equation to the surface. Instead of just imprinted the equation, since the surface was so thin I punched it all the way through.photo

In order to print this surface I used the FormLabs liquid printer. When the object came out of the printer it looked great and only had a few minor flaws to fix after this first print. One of the issues was the size of the object; it was just a little too small. The other issue was that the 2 in the exponent of the equation didn’t quite form correctly because it was too small. The final issues was that the equation had a \(+\) sign where there should have been a \(–\) sign (oops). Screen Shot 2015-07-20 at 12.51.21 PMThe equation was little too long with a 0 that was missing its center.  To fix these problems I rearranged the equation (and fixed the sign issues) in Adobe Illustrator and then punched it through the surface again. The second print on the liquid printed I made 1.4 times larger than the last print.

FullSizeRender 2 copyThe final print still had issues with the formula but otherwise worked out well. We are currently looking into changing the font to see if that helps with this issue. This model can be found on Thingiverse here.

FullSizeRender 5

Using my experiences building this and the other quadratic surfaces, I’ve put together a set of instructions on how to build quadratic surfaces using Mathematica and Cinema 4D. This can be found here.

Quadratic Surfaces – Paraboloids

The next quadratic surfaces I printed were an elliptic paraboloid and a regular paraboloid.

Screen Shot 2015-07-20 at 1.09.14 PM

For the elliptic paraboloid I imported the surface from Mathematica. 

 

Screen Shot 2015-07-20 at 1.10.07 PM

 

I then optimized the polygons, extruded them by 0.20 cm to give the surface thickness. After that I used the boole tool to make the edge flat and added an equation through the surface.Screen Shot 2015-07-20 at 1.09.49 PM 

I created the regular paraboloid from scratch in Cinema 4D using the same process as the cone.  I used the formula spline \(x(t)=t, y(t)=t^2, z(t)=0\) and then used the lathe tool with 60 rotation segments to rotate it 360 degrees. I optimized the polygons and extruded them to give the surface thickness. I also made sure to “boole” the edge to make it flat and added an equation. 

I printed both paraboloids on the same build bed with the MakerBot 2X printer. They can be found on Thingiverse here and here.

 Screen Shot 2015-07-20 at 2.56.17 PM   Screen Shot 2015-07-20 at 2.56.34 PM

Quadratic Surfaces – Cone

The next quadratic surface I made was a cone. This is a particularly challenging object since the cone’s two halves meet at a single point in the center. In order to deal with this printing challenge, I originally attempted to create the object and add a certain amount of thickness to the middle so it would print correctly.

The first cone I made using a method similar to my other quadratic surfaces by using a spline with the formula \(x(t)=t, y(t)=1.5*t, z(t)=0\) (it was important to use the * otherwise Cinema 4D did not multiply) from \(t=-2\) to \(t=2\) and rotating it with the lathe tool 360 degrees with 72 subdivisions. Screen Shot 2015-07-20 at 12.43.22 PMThen I optimized the object by 0.02cm. With the first cone I made I reversed the normals so they were facing outwards from the cone surface. When I extruded the surface by 0.25cm this automatically gave center of the object more thickness. Unfortunately I realized that while it gave the center thickness, it also offset the lines of the cone so they didn’t match up, which is not what we wanted. In order to fix this problem I did the same thing but did not reverse the normals (so they were facing the inside) and extruded the surface to give the cone thickness.

Screen Shot 2015-07-20 at 12.43.53 PMWith this second cone I removed the center using the Boole Tool, and a cylinder of radius\(=0.25\)cm and height\(=2\cdot 0.25\cdot 1.5=0.75\)cm. We did this in order to preserve the lines of the cone and give it the support the object needed. After removing this cylinder from the center I then added one of the same dimensions in its place. IMG_4592We knew this print had a high potential to fail but decided to print it as a test to see what we might need to change in our design. We left it overnight and it was a huge mess the next morning. Clearly this design didn’t work and we needed to rethink it. 

I decided that creating both sides of the cone in one object was just not going to work. Instead I decided to create both halves separately and then connect them using a cylinder made from a sheet of clear overhead plastic (an idea that came from Henry Segerman’s Calculus Surfaces). Screen Shot 2015-07-20 at 12.32.47 PMIn order to do this I used the same formula spline except this time from only \(t=-2\) to \(t=0\) and copied and rotated it to create the second half. On one half I put the equation for the cone \(\frac{z^2}{4}=x^2+y^2\) and immediately ran into trouble. I had used too many subdivisions (72) and the object was not accepting the Boole with the equation. After creating many different cones with different subdivisions I found that 60 worked. Once this problem was solved I added the equations to one of the halves of my cone and printed it. When I added the equation I put it all the way through the surface and not just imprinted on it since the object had very little thickness to it.

photo Screen Shot 2015-07-20 at 2.20.57 PMThe print was successful but showed a few flaws in my design. One was the equations and how they were a little too big and how the fraction parts of it needed to be downsized to match the other parts of the equation. This was easy to fix in Adobe Illustrator by changing the font size in the fractions from 36 to 24. I also made sure the numbers in my equation were not italicized and just the variables were. The other design flaw I found was that the bottom of the cone was not completely flat and was angled from when I extruded the surface to give it thickness. To fix this I used a cylinder and “booled” the bottom of both cones to make them flat. I then reprinted my object and had great results. These objects can be found on Thingiverse here.

Quadratic Surfaces – Ellipsoid

Screen Shot 2015-07-15 at 2.43.58 PMMy next successful quadratic surface was an ellipsoid. This surface I simply imported from Mathematica and then added equations to it, using the same process as described in my post on the hyperboloid of one sheet.

The first ellipsoid I made in was \(\frac{x^2}{16}+\frac{y^2}{25}+\frac{z^2}{4}=1\). When I put my .STL file into the MakerBot Desktop program I noticed that the program created supported that went up to the equation because it was on a curved surface and cut into the object. I decided to print the object with these supports and the equation on the side of ellipse and no raft. 

ellipse1-fail2 copyThe first print I did of the ellipsoid I cancelled the print early on so that I could inspect the sides. The surface looked a bit melty, where the filament had shrunk. We decided this was fine and to try to print it again. The second time I printed this object at about half way through the print it fell over and we found it covered in a stringy mess of filament. 

Taking this failure and the Screen Shot 2015-07-15 at 2.44.20 PMmelty-ness of the ellipsoid, we decided to create a new ellipsoid that was a little rounder. I followed the same process as for the first ellipsoid using the equation \(\frac{x^2}{4}+\frac{y^2}{6}+\frac{z^2}{3}=1\)                                          

ellipse1-4This time when I printed it I decided to put the equations on the top of the ellipse and use a raft. It printed perfectly. 

 

ellipse1-2 copyAfter my success with my second ellipsoid I decided to try to print my first ellipsoid again and this time with a raft. The object never fell over and printed perfectly. These ellipsoids can be found on Thingiverse here and here.

Quadratic Surfaces – Hyperboloid of One Sheet

My first successful print of a quadratic surface was a hyperboloid of one sheet.

Screen Shot 2015-07-15 at 2.16.58 PM

I began this project by creating a solid hyperboloid of one sheete in Mathematica. I didn’t like this object since it was a complete solid and not the surface I was trying to create.

 

To make the surface I originally attempted to import a Mathematica file of the surface into Cinema 4D and then give it thickness. This quickly became a nightmare to deal with. I had to be extremely careful about how many plot points I used in Mathematica because too many created too many polygons. These polygons also overlapped and so when I tried to extrude them to give the surface thickness the normals were off and it resulted in a very jagged surface. After spending hours trying to work with my Mathematica file I decided to try to create the surface from scratch in Cinema 4D.

In order to do this I used a ‘formula spline’. In Cinema 4D ‘formula splines’ are created using parametric equations. I used the equations \(x(t)=sinh(t), y(t)=cosh(t), z(t)=0\). I then rotated this spline 360 degrees using the Lathe tool. I then optimized the polygons in order to fully connect the object where the spline’s rotation began and end. Once this was done I was able to extrude the polygons to give the surface thickness using the polygon extrude and being sure to add caps to my extrusion.

Screen Shot 2015-07-15 at 2.29.00 PMOne this was done I had my object complete. The next step was to add equations. Using the instructions for how to put equations on solids I created my equations. In order to put them on the solid I used the bend tool in Cinema 4D. Using this tool was very difficult and took a lot of playing with to make it look good. The first thing I had to do was fit the bend box and rotate it in order to bend my equation correctly. When I went to bend the formula to fit my object, I found I needed to align only the first part of the equation on the left hand side with the surface (and not the center of the formula) since the bend tool bent the equation from the left and not at the center.

The first time I printed my object I realized the equations I had put on my object were far too small. I went back to my Cinema 4D file and make them bigger to get my final object! This object can be found on Thingiverse here.

hyperboloid1sheet-2hyperboloid1sheet-1

 

Three Intersecting Cylinders

Screen Shot 2015-07-10 at 10.36.08 AMMy latest project was to create three intersecting cylinders and the area of their intersection. I created these objects similarly to the two intersecting cylinders and the Steinmetz solid. For the volume common to all three cylinders I used a Mathematica code and imported the object into Cinema 4D.

Screen Shot 2015-07-10 at 10.43.19 AMFor the three cylinders I created them from scratch in Cinema 4D using the ‘Tube’ object. Creating the three cylinders was very straightforward. After my fail from the two cylinder object I also wanted to create the three intersecting cylinders cut in half, so the inside was visible. This proved to be a little more complicated. I used a ‘Cube’ and ‘Boole’ with each tube in order to get half cylinders. Then I was able to merge them together using a very similar process to putting equations on solids in Cinema 4D.

IMG_4560

I have yet to print the half cylinder object, but I did print the inside intersection. The first time I printed it I ran into a problem that also occurred with the Steinmetz object. Both solids seemed to have ‘melty’ sides. The angle of the object was such that no supports were needed and yet gravity seemed to affect the plastic and cause some issues. We think that the plastic filament cooled and shrunk during printing causing the deformations.

IMG_4562 IMG_4563

In order to fix this I decided to reprint the inside intersection with a different orientation. this required more supports but we had much less melting on the sides. I plan to try reprinting the Steinmetz object with another orientation to see if I can eliminate the deformed sides.

The original orientation is on the left and the new orientation is on the right. The objects can be found on Thingiverse here and here.

IMG_4564IMG_4565

 

 

Intersecting Cylinders – The Steinmetz Solid

My next goal was to print two cylinders whose axes intersect at right angles and the volume common to both, otherwise known as the Steinmetz solid. I began by modeling these objects in Mathematica so I could import the objects to Cinema 4D as well as create an interactive Mathematica worksheet about these objects.

Here are the Mathematica representations of two objects I planned to print:Screen Shot 2015-06-30 at 3.30.42 PM Screen Shot 2015-06-26 at 1.30.03 PM

I exported the top object as a .wrl file into Cinema 4D since it was already a solid.

For the bottom object,  I decided it would easiest to create it from scratch in Cinema 4D using the “Tube” object and simply adjusting the dimensions and orientation.

I attempted to print the intersecting cylinders on the Afinia printer in the Math Department. It failed to finish printing because the filament got tangled coming off of the spool. However this was not a complete fail since it shows the inside of the two cylinders and can still be used as a teaching tool. 

I am currently attempting to reprint it and will see how it goes! 

Update: The filament got tangled once again while I was printing resulting in a similar object to the one above. We decided that these were both better teaching tools than the original design and decided not to try to print again. 

I printed the Steinmetz solid on the MakerBot 2x and had great results! This object can be found on Thingiverse here and here.